Artificial Intelligence for Robotics¶
Course Book¶
- Localization
- 1 - Introduction
- 2 - Localization
- 3 - Total Probability
- 4 - Uniform Probability Quiz
- 5 - Uniform Probability Quiz Solution
- 6 - Uniform Distribution
- 7 - Uniform Distribution Solution
- 8 - Generalized Uniform Distribution
- 9 - Generalized Uniform Distribution Solution
- 10 - Probability After Sense
- 11 - Probability After Sense Solution
- 12 - Compute Sum
- 13 - Compute Sum Solution
- 14 - Normalize Distribution
- 15 - Normalize Distribution Solution
- 16 - pHit and pMiss
- 17 - pHit and pMiss Solution
- 18 - Sum of Probabilities
- 19 - Sum of Probabilities Solution
- 20 - Sense Function
- 21 - Sense Function Solution
- 22 - Normalized Sense Function
- 23 - Normalized Sense Function Solution
- 24 - Test Sense Function
- 25 - Test Sense Function Solution
- 26 - Multiple Measurements
- 27 - Multiple Measurements Solution
- 28 - Exact Motion
- 29 - Exact Motion Solution
- 30 - Move Function
- 31 - Move Function Solution
- 32 - Inexact Motion 1
- 33 - Inexact Motion 1 Solution
- 34 - Inexact Motion 2
- 35 - Inexact Motion 2 Solution
- 36 - Inexact Motion 3
- 37 - Inexact Motion 3 Solution
- 38 - Inexact Move Function
- 39 - Inexact Move Function Solution
- 40 - Limit Distribution Quiz
- 41 - Limit Distribution Quiz Solution
- 42 - Move Twice
- 43 - Move Twice Solution
- 44 - Move 1000
- 45 - Move 1000 Solution
- 46 - Sense and Move
- 47 - Sense and Move Solution
- 48 - Sense and Move 2
- 49 - Sense and Move 2 Solution
- 50 - Localization Summary
- 51 - Formal Definition of Probability 1
- 52 - Formal Definition of Probability 1 Solution
- 53 - Formal Definition of Probability 2
- 54 - Formal Definition of Probability 2 Solution
- 55 - Formal Definition of Probability 3
- 56 - Formal Definition of Probability 3 Solution
- 57 - Bayes’ Rule
- 58 - Cancer Test
- 59 - Cancer Test Solution
- 60 - Theorem of Total Probability
- 61 - Coin Flip Quiz
- 62 - Coin Flip Quiz Solution
- 63 - Two Coin Quiz
- 64 - Two Coin Quiz Solution
- Terms
- Resources
- 1 - Probability
- 2 - Probability Solution
- 3 - Localization
- 4 - Localization Solution
- 5 - Bayes’ Rule
- 6 - Bayes’ Rule Solution
- 7 - Localization Program
- 8 - Localization Program Solution
- 9 - Congratulations
- 1 - Office Hours Week 1
- Kalman Filters
- Introduction
- Tracking intro
- Gaussian Intro
- Variance Comparison
- Preferred Gaussian
- Evaluate Gaussian
- Maximize Gaussian
- Measurement and Motion 1
- Measurement and Motion 2
- Shifting the mean
- Predicting the Peak
- Parameter Update
- Parameter Update 2
- Separated Gaussians
- New Mean and Variance
- Gaussian Motion
- Predict Function
- Kalman Filter Code
- Kalman Prediction
- Kalman Filter Land
- Kalman Filter Prediction
- Another Prediction
- More Kalman Filters
- Kalman Filter Design
- 1 - Introduction
- 2 - Tracking Intro
- 3 - Tracking Intro Solution
- 4 - Gaussian Intro
- 5 - Gaussian Intro Solution
- 6 - Variance Comparison
- 7 - Variance Comparison Solution
- 8 - Preferred Gaussian
- 9 - Preferred Gaussian Solution
- 10 - Evaluate Gaussian
- 11 - Evaluate Gaussian Solution
- 12 - Maximize Gaussian
- 13 - Maximize Gaussian Solution
- 14 - Measurement and Motion 1
- 15 - Measurement and Motion 1 Solution
- 16 - Measurement and Motion 2
- 17 - Measurement and Motion 2 Solution
- 18 - Shifting the Mean
- 19 - Shifting the Mean Solution
- 20 - Predicting the Peak
- 21 - Predicting the Peak Solution
- 22 - Parameter Update
- 23 - Parameter Update Solution
- 24 - Parameter Update 2
- 25 - Parameter Update 2 Solution
- 26 - Separated Gaussians
- 27 - Separated Gaussians Solution
- 28 - Separated Gaussians 2
- 29 - Separated Gaussians 2 Solution
- 30 - New Mean and Variance
- 31 - New Mean and Variance Solution
- 32 - Gaussian Motion
- 33 - Gaussian Motion Solution
- 34 - Predict Function
- 35 - Predict Function Solution
- 36 - Kalman Filter Code
- 37 - Kalman Filter Code Solution
- 38 - Kalman Prediction
- 39 - Kalman Prediction Solution
- 40 - Kalman Filter Land
- 41 - Kalman Filter Prediciton
- 42 - Kalman Filter Prediciton Solution
- 43 - Another Prediction
- 44 - Another Prediction Solution
- 45 - More Kalman Filters
- 46 - Kalman Filter Design
- 47 - Kalman Matrices
- 48 - Kalman Matrices Solution
- 49 - Conclusion
- Kalman Filter Notes
- 1 - Measurement Update
- 2 - Measurement Update Solution
- 3 - New Variance
- 4 - New Variance Solution
- 5 - Heavytail Gaussian
- 6 - Heavytail Gaussian Solution
- 7 - How Many Dimensions
- 8 - How Many Dimensions Solution
- 9 - State Transition Matrix
- 10 - State Transition Matrix Solution
- 11 - Programming Exercise
- 12 - Programming Exercise Solution
- 13 - Congratulations
- 1 - Office Hours Week 2
- Particle Filters
- 1 - Field Trip
- 2 - State Space
- 3 - State Space Solution
- 4 - Belief Modality
- 5 - Belief Modality Solution
- 6 - Efficiency
- 7 - Efficiency Solution
- 8 - Exact or Approximate
- 9 - Exact or Approximate Solution
- 10 - Particle Filters
- 11 - Using Robot Class
- 12 - Robot Class Details
- 13 - Moving Robot
- 14 - Moving Robot Solution
- 15 - Add Noise
- 16 - Add Noise Solution
- 17 - Robot World
- 18 - Creating Particles
- 19 - Creating Particles Solution
- 20 - Robot Particles
- 21 - Robot Particles Solution
- 22 - Importance Weight
- 23 - Importance Weight Solution
- 24 - Resampling
- 25 - Resampling Solution
- 26 - Never Sampled 1
- 27 - Never Sampled 1 Solution
- 28 - Never Sampled 2
- 29 - Never Sampled 2 Solution
- 30 - Never Sampled 3
- 31 - Never Sampled 3 Solution
- 32 - New Particle
- 33 - New Particle Solution
- 34 - Resampling Wheel
- 35 - Resampling Wheel Solution
- 36 - Orientation 1
- 37 - Orientation 1 Solution
- 38 - Orientation 2
- 39 - Orientation 2 Solution
- 40 - Error
- 41 - Error Solution
- 42 - You and Sebastian
- 43 - Filters
- 44 - Filters Solution
- 45 - 2012
- 46 - Preview
- Particle Filter Notes
- 1 - Empty Cell
- 2 - Empty Cell Solution
- 3 - Motion Question
- 4 - Motion Question Solution
- 5 - Single Particle
- 6 - Single Particle Solution
- 7 - Circular Motion
- 8 - Circular Motion Solution
- 9 - Sensing
- 10 - Sensing Solution
- 11 - Final Quiz
- 12 - Final Quiz Solution
- 1 - Office Hours Week 3
- Conditional Particle Filters
- Motion Planning
- 1 - Motion Planning
- 2 - Compute Cost
- 3 - Compute Cost Solution
- 4 - Compute Cost 2
- 5 - Compute Cost 2 Solution
- 6 - Optimal Path
- 7 - Optimal Path Solution
- 8 - Optimal Path 2
- 9 - Optimal Path 2 Solution
- 10 - Maze
- 11 - Maze Solution
- 12 - Maze 2
- 13 - Maze 2 Solution
- 14 - First Search Program
- 15 - First Search Program Solution
- 16 - Expansion Grid
- 17 - Expansion Grid Solution
- 18 - Print Path
- 19 - Print Path Solution
- 20 - A*
- 21 - Implement A*
- 22 - Implement A* Solution
- 23 - A* in Action
- 24 - Dynamic Programming
- 25 - Computing Value
- 26 - Computing Value Solution
- 27 - Computing Value 2
- 28 - Computing Value 2 Solution
- 29 - Value Program
- 30 - Value Program Solution
- 31 - Optimum Policy
- 32 - Optimum Policy Solution
- 33 - Left Turn Policy
- 34 - Left Turn Policy Solution
- 35 - Planning Conclusion
- Motion Planning Notes
- Problem Set 4
- 1 - Admissible Heuristic
- 2 - Admissible Heuristic Solution
- 3 - Admissible Heuristic 2
- 4 - Admissible Heuristic 2 Solution
- 5 - Bad Heuristic
- 6 - Bad Heuristic Solution
- 7 - Diagonal Motion
- 8 - Diagonal Motion Solution
- 9 - Stochastic Motion
- 10 - Stochastic Motion Solution
- 1 - Office Hours Week 4
- 1 - Robot Motion
- 2 - Robot Motion Solution
- 3 - Smoothing Algorithm
- 4 - Smoothing Algorithm Solution
- 5 - Smoothing Algorithm 2
- 6 - Smoothing Algorithm 2 Solution
- 7 - Smoothing Algorithm 3
- 8 - Smoothing Algorithm 3 Solution
- 9 - Path Smoothing
- 10 - Path Smoothing Solution
- 11 - Zero Data Weight
- 12 - Zero Data Weight Solution
- 13 - PID Control
- 14 - PID Control Solution
- 15 - Proportional Control
- 16 - Proportional Control Solution
- 17 - Implement P Controller - Artificial Intelligence for Robotics
- 18 - Implement P Controller Solution - Artificial Intelligence for Robotics
- 19 - Oscillations
- 20 - Oscillations Solution
- 21 - PD Controller - Artificial Intelligence for Robotics
- 22 - PD Controller Solution - Artificial Intelligence for Robotics
- 23 - Systematic Bias
- 24 - Systematic Bias Solution
- 25 - Is PD Enough
- 26 - Is PD Enough Solution
- 27 - PID Implementation - Artificial Intelligence for Robotics
- 28 - PID Implementation Solution - Artificial Intelligence for Robotics
- 29 - Twiddle
- 30 - Parameter Optimization - Artificial Intelligence for Robotics
- 31 - Parameter Optimization Solution - Artificial Intelligence for Robotics
- 32 - Summary
- PID Notes
- Problem Set 5
- 1 - Missing Parameters
- 2 - Missing Parameters Solution
- 3 - Cyclic Smoothing
- 4 - Cyclic Smoothing Solution
- 5 - Constrained Smoothing
- 6 - Constrained Smoothing Solution
- 7 - Racetrack Control
- 8 - Racetrack Control Solution
- 1 - Office Hours Week 5
- 1 - Putting It All Together
- 2 - Localization
- 3 - Localization Solution
- 4 - Planning
- 5 - Planning Solution
- 6 - PID
- 7 - PID Solution
- 8 - Your Robot Car
- 9 - Segmented CTE
- 10 - Segmented CTE Solution
- 11 - Fun with Parameters
- 12 - Wrap Up
- 13 - SLAM
- 14 - Is Localization Necessary
- 15 - Is Localization Necessary Solution
- 16 - Graph SLAM
- 17 - Graph SLAM Solution
- 18 - Implementing Constraints
- 19 - Implementing Constraints Solution
- 20 - Adding Landmarks
- 21 - Adding Landmarks Solution
- 22 - SLAM Quiz
- 23 - SLAM Quiz Solution
- 24 - Matrix Modification
- 25 - Matrix Modification Solution
- 26 - Untouched Fields
- 27 - Untouched Fields Solution
- 28 - Omega and Xi
- 29 - Omega and Xi Solution
- 30 - Landmark Position
- 31 - Landmark Position Solution
- 32 - Expand
- 33 - Expand Solution
- 34 - Introducing Noise
- 35 - Introducing Noise Solution
- 36 - Confident Measurements
- 37 - Confident Measurements Solution
- 38 - Implementing SLAM
- 39 - Implementing SLAM Solution
- 40 - Congratulations
- SLAM Notes
- 1 - Matrix Fill In
- 2 - Matrix Fill In Solution
- 3 - Online SLAM
- 4 - Online SLAM Solution
- 1 - Office Hours Week 6
- Office Hours